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Abstract:

A comprehensive and robust safety signal detection program, that 
includes a component which is based upon inferential statistical 
reasoning, is critical for clinical development programs. Safety signal 
detection involving ongoing (e.g. blinded) clinical trials have not always 
employed statistical tools and reasoning. Therefore, fundamental 
changes including the re-engineering of the safety signal detection 
process during the clinical development phase, are needed. Various 
statistical methods (utilizing a Bayesian framework) for assessing and 
evaluating blinded, clinical trials, adverse event data for possible safety 
signals, are presented and further evaluated. Results of simulations 
assessing the various methods and models will be presented. 
Additionally, this talk will provide more insight into the why, how and 
what of safety signal detection for clinical trials, and how statistical 
based reasoning can be implemented within a comprehensive safety 
signal detection process.

Safety Signal Detection: For Ongoing Clinical Trials, Utilizing a 
Bayesian Framework
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ן Motivation for Safety Signal Detection (SSD) and General 
Safety Paradigm Shift

• Why is change needed?
• How should change occur?
• What should change?

ן Signal detection: SSD for blinded clinical trials data
• Objectives of SSD Blinded Analyses
• Bayesian Application to SSD
• SSD Model Descriptions and Results (mock example)
• Simulation Results
• SSD Visualization
• SSD and IND Safety Reporting

ן Lessons Learned / Final Thoughts / Conclusion
• Additional Research and Expansion of SSD
• Lessons Learned / Final Thoughts

Agenda \ Outline



Motivation for 
SSD and General 
Safety Paradigm 
Shift
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Motivation for SSD and General Safety Paradigm Shift

What?

How?

Why?
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 Pharma in the news

WHY is Change Needed?
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 Pharma in the News

 Vioxx

(http://www.nbcnews.com/id/6192603/ns/health-
arthritis/t/report-vioxx-linked-thousands-deaths/#.W7urnTbQaUl)

 Tamiflu 

(http://tenpennyimc.com/2013/01/12/why-you-should-avoid-
tamiflu/)

 Fines for non-compliance  

(http://www.arena-international.com/pharmaco/big-pharma-being-
fined-for-non-compliance-to-pv-regulations/1529.article)

WHY is Change Needed?

http://www.nbcnews.com/id/6192603/ns/health-arthritis/t/report-vioxx-linked-thousands-deaths/#.W7urnTbQaUl
http://tenpennyimc.com/2013/01/12/why-you-should-avoid-tamiflu/
http://www.arena-international.com/pharmaco/big-pharma-being-fined-for-non-compliance-to-pv-regulations/1529.article
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 Regulatory Environment

 Code of Federal Regulations (CFR 312.32)

 Safety Reporting Requirements for INDs and BA/BE Studies (Final Guidance, Dec 
2012)

– An “aggregate analysis of specific events observed in clinical trials that indicate those 
events occur more frequently in the drug treatment group than in a concurrent or 
historical control group”

 Safety Assessment for IND Safety Reporting (Draft Guidance for Industry, Dec 2015)

– Sponsors should develop a Safety Assessment Committee and a Safety Surveillance 
Plan.

– Sponsors should periodically review accumulating safety data, integrated across 
multiple completed and ongoing studies

– Provide a quantitative framework for measuring the evidence of an association 
(unexpected events) or a clinically important increase (for expected events)

WHY is Change Needed?
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 Regulatory Environment

Safety Monitoring and SSD requirements (regulatory)

 Signal Definition
Information that arises from one or more multiple sources (including observations or experiments), 
which suggests a new, potentially causal association, or a new aspect of a known association between 
an intervention [e.g., administration of a medicine] and an event or set of related events, either adverse 
or beneficial, that is judged to be of sufficient likelihood to justify verificatory action. (CIOMS, 2010, p. 14)

 Signal Detection Definition

The act of looking for and/or identifying signals using event data from any source. (CIOMS, 2010, p. 116)

 The Core of Safety Signal Detection

Define and assess measures of disproportionate reporting (e.g. observed / expected). Identify events 
exceeding a specified threshold. (Good Pharmacovigilance Practices…, 2005)

WHY is change needed?
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WHY is change needed?

 Industry Trends and Current Literature

 Safety Monitoring in Clinical Trials (Yao et. al., 2013)
 Monitoring patient safety during clinical trials is a critical component throughout the drug-development life-

cycle.
 Statistical methods, especially those based on the Bayesian framework, are important tools to help provide 

objectivity and rigor to the safety monitoring process.

 Early safety signal detection not only leads to better patient protection, but also has the potential to save 
development costs.

 Recommendations for Safety Planning, Data Collection, Evaluation and Reporting During Drug, Biologic and
Vaccine Development: A Report of the Safety Planning, Evaluation and Reporting Team. 
(Crowe et. al., 2009)

 Proactive early planning of safety analyses in a Program Safety Analysis Plan (PSAP) and periodic aggregate 
safety analyses have been recommended as standard industry practices (Crowe et. al., 2009).



SSD: For Ongoing Clinical Trials, Utilizing a Bayesian Framework | BASS | October 2018 | Copyright © 2015 AbbVie 12

WHY is Change Needed?

 Commitment to Patient Safety

• “Patient safety is at the heart of all we do and one of our core principles. All of our medicines undergo thorough 
safety monitoring and evaluation processes at every stage of a medicine’s lifecycle” – Teva Pharmaceuticals

• “Mallinckrodt is committed to the safety of patients, including those in the hospital settings, and the safe use of 
our broad portfolio of specialty pharmaceutical products,” – Hugh O’Neill, Sr. VP and President, U.S. Specialty 
Pharmaceuticals, Mallinckrodt.

• “Beginning with the discovery of a potential new medicine, and for as long as it is available to patients, our goal 
is to ensure that the benefits and risks of a medication are continuously monitored and well-understood by 
regulators, healthcare providers and patients.” – Eli Lilly

• “Part of our responsibility as a global pharmaceutical company is to help keep the patients who take our 
medicines safe.” – Pfizer

• “Celgene is a world leader in pioneering risk minimization techniques to deliver safe use of medicinal products.” 
– Celgene

• “Patient safety is the top priority for Biogen and AbbVie”.
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WHY is Change Needed?

Corporate Principles and Values

 Accurate characterization of a compounds safety profile is essential:
 Patient safety
 Valuation of compound
 Required to provide timely and accurate information on informed 

consent (IC) statements and investigator brochures (IB).
 Aggregated data across all trials is required.

 Failure to report all safety findings in a timely manner leads to injury, loss of 
life, loss of consumer confidence for the company / industry, as well as  
significant financial implications for the company.
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HOW Should Change Occur?

 Statistical Science,  Data Visualization,  Coordination

 Increased use of Data Visualization tools

 Interactive / drill-down capabilities
 Forest Plots, Threshold Plots, Time to Event Plots, Hazard Plots, etc.

 Use of scientific / statistical rigor (tools) for SSD blinded and aggregated unblinded 
analyses

 AEs, Labs, Vital Signs, ECGs

 Building of global safety databases by compound for:

 Safety signal detection
 Aggregated safety data analysis

 Develop Program Safety Analysis Plans
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WHAT Should Change?

What should companies do? 

 Develop Pooled, Aggregate Safety Databases
 Earlier in the lifecycle of the clinical development program, (e.g. don’t wait until time for submission)
 Develop standard structures and reporting templates to support SSD and various other safety 

reporting needs 

 Safety Signal Detection
 Develop/incorporate statistical methods for blinded analysis of clinical trials data
 Implement data visualization (static and interactive) tools
 Optimize outputs produced for SSD

 IND Safety Reporting
 Align the IND-SR process, around FDA guidance / regulations
 Report SAEs that have a causal association to study drug (per sponsor’s assessment, based upon 

medical, statistical evidence)
 Consistent terminology for AEs/ADRs reported in IBs (e.g. Anticipated, Predicted,  Expected AE of 

Interest, etc.)



Signal Detection: 
SSD for Blinded 
Clinical Trials 
Data



SSD: For Ongoing Clinical Trials, Utilizing a Bayesian Framework | BASS | October 2018 | Copyright © 2015 AbbVie 17

 Research for blinded analyses, Findings, and Results

Objectives of SSD Blinded Analyses

Signal

Missed 
alarm

False 
alarm

Noise

Criterion

No Alarm Alarm
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 Core Question

Objectives of SSD Blinded Analysis

An Example:
– Assume that the underlying AE pbo inc. prop. for a significant 

event (estimated from historical data (n=500) with 24 weeks 
of follow-up) is 2%.

– A new blinded study has Y events after 80 subjects (3:1 
randomization ratio) have completed 24 weeks.

– What is the expected value of Y, if there is no difference 
between actively treated subjects and current and historical 
placebo? How large does Y have to be to suggest that a 
difference (i.e. “signal”) exists?
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 A Simple Frequentist Solution

Objectives of SSD Blinded Analysis

Binomial Distribution
– pmf:  p(y) = 𝑛𝑛

𝑦𝑦 θy (1-θ)n-y ,   
y=0,1,2,…,n

– E(Yi) = θ,  var(Yi) = θ(1-θ)
– Y is a binomial random 

variable 
with mean and variance:

– μ = E(Y) = nθ 
– σ2 = var(Y) = nθ(1-θ) 
– Expected value: 

nθ = (80)(.02) = 1.6

n = 80, θ = 0.02

P(Y  <  y) Probability

1 0.1986

2 0.5230

3 0.7844

4 0.9231

5 0.9776

6 0.9946

7 0.9989

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 1 2 3 4 5 6 7 8 9 10

Distribution for  binomial random 
variable Y ~ bin(n=80, θ=0.02)
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 A Simple Frequentist Solution:  Additional Questions

Objectives of SSD Blinded Analysis

Questions \ Issues
– But how did we derive 

our estimate for θ?
– How confident are we 

in our value of θ? 
– What if our time-at-risk 

for our new blinded 
data is not equal to our 
time-at-risk from our 
historical data?

– What if our historical 
population is not 
representative of our 
new study 
population(s)?

n = 80, θ = 0.02

P(Y <  y) Probability

1 0.1986

2 0.5230

3 0.7844

4 0.9231

5 0.9776

6 0.9946

7 0.9989

0.00
0.05
0.10
0.15
0.20
0.25

0.30

0.35

0 1 2 3 4 5 6 7 8 9 10

Distribution for  binomial random 
variable Y ~ bin(n=80, θ=0.02)
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Objectives of SSD Blinded Analysis

 How do we derive an estimate for θ?

Assume we have multiple historical studies, also assume we have constant underlying hazard 
rates: 

(1) Compute placebo incidence rates (IR) for each study (j) for each AE of interest. 

IRj = 𝑟𝑟
𝑃𝑃𝑃𝑃

= 𝑟𝑟
∑𝑖𝑖=1
𝑟𝑟 𝑡𝑡𝑖𝑖 + 𝑛𝑛−𝑟𝑟 𝑃𝑃

where: r = the number of patients who experience the event, 
ti = the time to event for the ith patient,
n = the total number of patients
T = the average time to censor (for all patients who were censored)

 Note that IR is the MLE of the parameter λ (the underlying hazard rate from an
exponential distribution).
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OBJECTIVES OF SSD BLINDED ANALYSIS

 How do we derive an estimate for θ (cont.)?

(2)  Compute an overall, weighted placebo estimate for the incidence rate (e.g. the
hazard rate, λw) for each AE of interest.  

λw = ∑𝑗𝑗=1𝑘𝑘 wj λj = ∑𝑗𝑗=1𝑘𝑘 wj IRj

where: wj is computed from the total person-time for each study, as specified  
in Crowe et al (2016), [Study size adjusted method for incidence rates]

(3)  Derive the expected time-at-risk distribution of patients from the blinded
ongoing study (e.g. derive relative time for subjects who completed, prematurely 
withdrew, or were ongoing at the point of database cut-off)
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OBJECTIVES OF SSD BLINDED ANALYSIS

 How do we derive an estimate for θ (cont.)?

(4)  Compute expected incidence count and incidence proportion, from weighted
hazard rate (step 2) and distribution of expected time-at-risk (step 3)

- Expected incidence count = E[Y] = ∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 = ∑𝑖𝑖=1𝑛𝑛 (1 − 𝑒𝑒−𝜆𝜆𝑡𝑡𝑖𝑖 )

- Expected incidence proportion (θ) = E[Y] / n 

 θ is a time-adjusted estimate for incidence proportion

[However distribution of θ requires additional thought]
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 A Hybrid Frequentist / Bayesian Solution

Objectives of SSD Blinded Analysis

From historical data (n=500),  α=10 patients with the event; 
β=490 patients w/o event

Beta Distribution
– If θ is not fixed but has variation, the 

Beta distribution can be used to 
model this random variation. The 
Beta distribution represents a 
distribution of probabilities.

– pdf:  f(θ; α,β) = Г(α+β)
Г(α)Г(β)

θα-1 (1 – θ)β-1 ,    
0 ≤ θ ≤ 1

– Let: 
– μ  = α

α+β
, φ = 1

α+ β
– Then:

– E(θ) = μ,    var(θ) = μ(1-
μ)φ/(1+φ)

– Expected value (μ) = 
10/(10+490) = 0.02



SSD: For Ongoing Clinical Trials, Utilizing a Bayesian Framework | BASS | October 2018 | Copyright © 2015 AbbVie 25

 A Hybrid Frequentist / Bayesian Solution

Objectives of SSD Blinded Analysis

Beta-Binomial Distribution
– Given θ, Y has a binomial distribution, 

bin(n, θ), and θ has a beta 
distribution, the resultant mixture  of 
distributions leads to the beta-
binomial distribution. Marginally, 
averaging with respect to the beta 
distribution for θ , the pmf for Y is:

– pmf:  f(y; α,β) = 𝑛𝑛
𝑦𝑦

𝐵𝐵(α+𝑦𝑦, 𝑛𝑛+β−𝑦𝑦)
𝐵𝐵(α,β)

,        
y = 0, 1, …, n

– Let: 
– μ  = α

α+β
, φ = 1

α+ β
– Then:

– E(Y) = nμ,    var(Y) = nμ(1-
μ)[1+(n-1)φ/(1+φ)

– Expected value (nμ) = 
80(10/(10+490) = 1.6

The Beta-binomial has slightly more spread then the binomial. 
However, as φ→0, the beta-binomial converges to a binomial.

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

1 2 3 4 5 6 7 8 9 10 11

Binomial (n=80, θ=.02) and Beta-Binomial 
Distributions (n=80, α=10, β=490)

Binomial

Beta-Binomial

P(Y  <  y) Probability

1 0.2232

2 0.5371

3 0.7772

4 0.9093

5 0.9677

6 0.9897

7 0.9970
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 Bayesian Philosophy, Bayes’ Theorem and Bayesian Analysis

Objectives of SSD blinded analysis (Bayesian refresher)

 Bayesian Philosophy
 Bayes’ rule provides a rational method for updating beliefs in light of new information 

(inductive learning ~ Bayesian inference)

 Bayesian methods are data analysis tools derived from the principles of Bayesian 
inference

 Statistical induction is the process of learning about the general characteristics of a 
population from a subset of members of that population.

 Bayes’ Formula/Theorem 

 P(A/B) = P(BA) / P(B) =  [P(B/A)P(A)] / [P(B/A)P(A) + P(B/𝐴𝐴) P(𝐴𝐴)] 

 p(θ|y) = 𝑝𝑝 𝑦𝑦/θ 𝑝𝑝(θ)
� ∫Θ 𝑝𝑝(𝑦𝑦/�θ)𝑝𝑝 �θ 𝑑𝑑�θ
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 Bayesian Philosophy, Bayes’ Theorem and Bayesian Analysis

Objectives of SSD blinded analysis (Bayesian refresher)

In Bayesian Analysis 
– P(θ|y)        P(y|θ) P(θ)

– The sample space Y is the set of all possible datasets, from which a 
single dataset y (the observed data) will result.

– The parameter space Θ is the set of possible parameter values, from 
which we hope to identify the value that best represents the true 
population characteristics.

– The prior distribution p(θ) describes our belief that θ represents the 
true population characteristic (e.g. our historical data).

– The sampling model for the data p(y|θ) describes our belief that y 
would be the outcome of our study if we knew θ to be true.

– Once the data (y) is obtained, we update our beliefs about θ. Therefore 
our posterior distribution p(θ/y) describes our belief that θ is the true 
value, having observed dataset y.

Posterior 
Probability

Likelihood model

Prior Distribution
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 The Form of the Finite Mixture Model

Objectives of SSD blinded analysis (mixture models)

Model description and specifications 
 Suppose you observe realizations of a random variable Y, in which the distribution depends 

on an unobservable (latent) random variable S (e.g. treatment group assignment) that has a 
discrete distribution and can occupy one of k states (e.g. placebo, active treatment).

 Let πj denote the probability that S takes on state j. Conditional on S = j, Y is assumed to be 
fj(y; S=j).

 The marginal distribution of Y is obtained by summing the joint distribution of Y and S over 
the states in the support of S:

• f(y;α,β) = ∑𝑗𝑗=1𝑘𝑘 Pr 𝑆𝑆 = 𝑗𝑗 𝑓𝑓(𝑦𝑦; αj , βj|S)  =  ∑𝑗𝑗=1𝑘𝑘 π𝑗𝑗 𝑓𝑓(𝑦𝑦; αj , βj|S=j)

• This is a mixture of distributions and the πj are called the mixture (or prior) probabilities.

• This model is termed a Finite Mixture (of distributions) model, because there are k finite 
states of S.

• For categorical data, the binomial and beta-binomial distributions can be specified for the 
data.
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 Exponential, Binomial, Poisson, Gamma

Objectives of SSD blinded analysis (Distribution Relationships)

 Exponential  Poisson
 If the times between random events follow the exponential distribution with rate λ, then the 

total  number of events in a time period of length t follows the Poisson distribution with 
parameter λt.

 Interarrival times are independent and identically distributed exponential (λ) random variables, 
when λ is the rate of the Poisson process

 Poisson  Binomial/Bernoulli 
 If we divide an interval of time into disjoint intervals of length h, where h is small [e.g. 0 –h, h-

2h, 2h-3h,…], each interval corresponds to an independent Bernoulli trial, such that in each 
interval, there is a successful event with prob. λh.

 Bernoulli process is a discrete time approximation to the Poisson process with rate λ, if the 
distribution of B(t) is approximately Poisson (λt)

 Poisson  Gamma
 Time until nth event occurs has a Gamma (n, λ) distribution
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 Prior Distributions for Parameters

Objectives of SSD blinded analysis (Distribution Relationships)

Conjugate prior for the Exponential distribution is the gamma distribution:

λw ~ Gamma(λw; α, β)  

where: α is interpreted as the number of patients with the event,
β is interpreted as the total patient-time 

Conjugate prior for the Binomial / Bernoulli distribution is the Beta distribution:

π  ~  Beta(π; α, β)

where: α is interpreted as the number of patients with the event,
β is interpreted as the number of patients without the event 



SSD: For Ongoing Clinical Trials, Utilizing a Bayesian Framework | BASS | October 2018 | Copyright © 2015 AbbVie 31

 Various models / methods investigated

Bayesian Application to SSD

Table of Models
Model 
Description

Priors Likelihood 
(data) model

SAS (Proc 
MCMC)

SAS (Proc 
FMM)

R 
(OpenBugs)

Pooled Prior Overall Binomial Model 1 - -

Population
Mixture

Each Trt 
Group

Binomial Model 2a Model 2b -

Individual Mixture Each Trt 
Group

Binomial Model 3a - Model 3b

Population 
Mixture

Each Trt 
Group

Poisson Model 4a - Model 4b
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 General Bayesian Framework for assessing safety signals

Bayesian Application to SSD

Framework that applies to all models 
 The Bayesian framework for potential signal detection is based on evaluating the probability that 

a clinical parameter of interest (e.g. adverse event incidence rate or proportion) exceeds a pre-
specified critical value, given the observed blinded data. Mathematically, this is formulated as an 
inequality around a threshold and corresponding Bayesian posterior probability and is denoted 
as (Wen et al., 2015):
 Pr(θ > θc | blinded observed data) > P cut-off

where: θ represents the clinical parameter of interest(e.g., “pooled blinded proportion”,
estimated risk difference, etc.) 

θc represents the critical value for comparison (e.g., historical incidence 
proportion, or 0 if estimated risk difference is the clinical parameter of
interest),

P cut-off is a probability threshold (such as 90%, 95%, or 99%) representing the 
desired confidence needed to identify a potential safety signal.
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 Setting Priors and Thresholds

Bayesian Application to SSD

Priors
– Establishing and 

setting priors is critical 
to the final analysis. 
What may appear to 
be a non-informative 
prior may not be 
“non-informative” and 
could alter or bias the 
results.

– The neutral prior 
Beta(1/3, 1/3) has the 
unique property of 
centering the 
posterior distribution 
almost exactly at the 
sample mean 
(Kerman, 2011)

Source: [Kerman (2011); Electronic Journal of Statistics ]
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 Setting Priors and Thresholds

Bayesian Application to SSD

Priors (cont.)
– For the mixture models, the 

following general rule appears 
to have good utility:

θ ~ Beta(1/3 + mp, 1/3 + m(1 − p))
where m is the sample size and
p is the incidence proportion
from historical data
(Kerman, 2011).

– For the overall pooled model, a 
neutral prior should be based 
upon the estimated incidence 
proportion from the historical 
placebo, so that the mean of 
the beta distribution equals the 
mean from the historical data, 
but down-weighted to an 
effective sample size of 1. 
[More about this will be 
discussed] 

Source: [Kerman (2011); Electronic Journal of Statistics ]
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 Setting Priors and Thresholds

Bayesian Application to SSD

Thresholds
 The value for “P Cut-off” should be set to balance the 

sensitivity and specificity of the corresponding decision rule. 
Operating characteristics based upon simulations are used to 
assess the sensitivity (power) and specificity of the rule.

 In general, simulations suggest that less common events (e.g. 
incidence proportions around 5% or less) should used smaller 
“P Cut-off” values (e.g. 0.925 or 0.95), where events with larger 
incidence proportions (e.g. 10% or more) should use large “P 
Cut-off values (e.g. 0.975).
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Model 1: (Pooled Rate)
 Data: Y = Ypla + Yact (only Y  

obs.)          
n = 80

 Priors: θc ~ B(α,β) (for comp.
only)

θ ~ B(α/[α+β],1-α/[α+β])
 Data model: Y ~ binom(n,θ)
 Results are remarkably

consistent with Beta-binomial
(frequentist or hybrid
frequentist/Bayesian
approach), which is the intent
of this model.

 Bayesian framework (and
Proc MCMC) offers other
advantages

SSD model description and Results (mock example)
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0 0.05 0.1 0.15 0.2

Density Plot

Prior Posterior Likelihood

Y (data)
Posterior

Probability

1 0.2258

2 0.5414

3 0.7783

4 0.9111

5 0.9687

6 0.9893

7 0.9968

P(θ > θc | Y) =

 Core Question Re-visited

Y=6 patients observed with event, n=80, Prior θ ~ B(0.02,0.98)



SSD: For Ongoing Clinical Trials, Utilizing a Bayesian Framework | BASS | October 2018 | Copyright © 2015 AbbVie 37

 Mixture of Binomial Distributions

SSD model description and Results (mock example)

What does 
the resulting 
distribution 

look like 
when you 
combine 
different 
binomial 

distributions?
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p(
Y)

Y (No. of Patients with an event)

Binomial Distribution for Y0 (p0=.02) and Y1 (p1 = 0.0933) from 5000 
simulations of n=80 patients [20-pla, 60-act])

P(Y0)

P(Y1)
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 Mixture of Binomial Distributions

SSD model description and Results (mock example)

Both the 
Poisson and 
Binomials 
approximate 
the mixture 
very well. 
[only in 
extreme, non-
realistic 
settings will 
there be any 
noticeable 
departure]
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 Core Question Re-visited

SSD model description and Results (mock example)

Model 4a: (Pop mixture – Poisson)
 Data: Y = Ypla + Yact (only Y

obs.)          
n = 80

 Priors: θP ~ B(α=10,β=490) 
θA ~ B(1/3,1/3)
φ ~ ½ n(0,1000)
Pp ~ B(200,600)

(rr=1:3)
 Data model: Y ~ poisson(λy)

(n-Y) ~ poisson(λn-y)
where: λy = (θp) x (Pp) x (φ) + (θa) x

(1 - Pp) x (φ),

λn-Y = (1 - θp) x (Pp) x (φ) + 
(1 - θa) x (1 - Pp) x (φ)

Y=6 patients observed with event, n=80, Prior θP(10,490), Prior θA ~ B(1/3 , 1/3)

Y (data)
Posterior

Probability

1 0.2613

2 0.5235

3 0.7765

4 0.9156

5 0.9715

6 0.9954

7 0.9976

P(θA > θP | Y) =

-2
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Density Plot
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SSD model description and Results (mock example)
 Core Questions: Summary of Results from all models 

(6 events, n=80 patients, 2% historical placebo Inc. Prop. from nh=500)
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 2nd blinded Study – 1 completed study (mock example)
SSD model description and Results (mock example)

Model 2a: (Binomial Pop. mixture)

 Data: Y = Ypla + Yact (only Y
obs.)          
n = 150

 Priors: θc ~ B(α=10.33,β=490.33)
θp1 ~ B(α=1.33,β=39.33)
θa1 ~ B(α=4.33,β=116.33)
Pp ~ B(200,400) (rr=1:2)

 Data model: Y ~ binom(n,θ)

where: θ = (θp) x (Pp) + (θa1) x (1 - Pp)

and θP is a weighted combination
of θc and θp1

Y=11 patients observed with event, (n=150)

Y (data)
Posterior

Probability

6 0.8865

7 0.9147

8 0.9404

9 0.9573

10 0.9745

11 0.9829

12 0.9900

P(θa > θp | Y) =
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 2nd blinded Study – 1 completed study (mock example)

SSD model description and Results (mock example)

Model 4a: (Pop mixture–Poisson)
 Data: Y = Ypla + Yact (only Y obs.)          

n = 150
 Priors: θc ~ B(α=10.33,β=490.33)

θp1 ~ B(α=1.33,β=39.33) 
θa1 ~ B(4.33,116.33)
φ ~ ½ normal(0,1000)
Pp ~ B(200,400) (rr=1:2)
θp = weighted comb. of θc

and θP1

 Data model: Y ~ poisson(λy)
(n-Y) ~ poisson(λn-y)

where λy = (θp) x (Pp) x (φ) + (θa1) x
(1 - Pp) x (φ),

λn-Y = (1 - θp) x (Pp) x (φ) + 
(1 – θa1) x (1 - Pp) x (φ)

Y=11 patients observed with event, (n=150)

Y (data)
Posterior

Probability

6 0.8753

7 0.9113

8 0.9418

9 0.9601

10 0.9741

11 0.9811

12 0.9917

P(θa > θp | Y) =
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 Simulation Methods

Simulation results (Set-up)

Objective of Simulations
 Compare the various methods for efficiency and estimation accuracy

– Assess the sensitivity (power) and specificity (false positives) of the 
methods

– Compare estimates obtained from each model to expected values (e.g. 
underlying means specified in the simulated data)

Data Creation Methods Overview
 Simulated time to adverse event (using the Weibull distribution 

[with shape parameter=1 ~ Exponential Distribution])
 Simulated enrollment of patients using the Uniform distribution
 This allowed me to simulate separate interim SSD cuts in which patients, 

time-at-risk and events accrued over time. 
 Number of trials = variable (up to 1,000)
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 Simulation Methods

Simulation results (Set-up)

Macro variables created to control AE rates, trial duration, sample size, 
randomization ratios, etc.

ippc        (Incidence proportion for historical placebo control at specified time)
n_hist     (historical n used for ippc, equals a+b for beta prior)
ipp          (Incidence proportion for placebo treatment, valid values: 0 - 1)

ipa           (Incidence proportion for active treatment, valid values: 0 - 1)
time (time-at-risk [weeks])
n (sample size per trial)
n2            (sample size per trial - 2nd trial) 

ratio (randomization ratio [active/placebo] of 1st trial
ratio2       (randomization ratio [active/placebo] of 2nd trial

trials        (number of trials to simulate)
seed         (random number generator seed)

scenario  (counter variable to keep track of scenarios and corresponding datasets)
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 Results

Simulation Results (Comparing methods)

1st study – OC Curve
– Depicts the 

probability of 
detecting a signal 
from any of 4 interim 
SSD cuts.

– Both models show 
comparable and 
good specificity(low 
false positive rate) 
and comparable 
sensitivity (power to 
detect a signal, when 
a relevant difference 
exists). 0.0%
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 Results

Simulation Results (Comparing methods)

1st study – Estimation Accuracy
– Compares risk difference from 

each model to the underlying 
true risk difference (from 
simulated data), for a series of 
4 interims and varying levels 
of effect size. 

– Model (1) which uses a pooled 
beta prior inferred from the 
estimated historical placebo 
data, and ESS=1, accurately 
tracks the expected result 
(from simulations).

– Model (4a) which uses a B(1/3, 
1/3) prior for active treatment, 
consistently over-estimates 
the risk difference). 0.00%
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 Results

Simulation results (Comparing methods)

2nd study – OC Curve
– There is no 

observable 
difference 
between model 2a 
and 4a. They track 
each other 
perfectly.

– The specificity of 
both models is 
excellent. There is 
less than a 1% 
chance of 
declaring a signal, 
when the 
underlying 
placebo and active 
rates are equal. 
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 Results

Simulation results (Comparing methods)

2nd study –
Estimation Accuracy

– Both models 
very slightly 
under-estimate 
the expected 
results (from 
simulations). 
However, there 
is no observable 
difference 
between the 
two models.
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False 
positive 
rates are 
fairly well 
controlled 
for all 
examined 
cut-points, 
with good 
sensitivity 
(power) 
for the 
0.925 and 
0.95 
threshold 
levels.  

Simulation Results (comparing threshold cut-points)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

0.00% 0.50% 1.00% 1.50% 2.00% 2.50% 3.00%

Pr
ob

ab
ili

ty
 o

f d
et

ec
tin

g 
a 

sig
na

l a
t a

ny
 o

f 4
 in

te
rim

 lo
ok

s

True Drug AE rate

Operating Characteristics of Selected Threshold Levels
(Historical Placebo AE rate = 0.125%)

Signal (0.925) Signal (0.95) Signal (0.975) Signal (0.99)



SSD: For Ongoing Clinical Trials, Utilizing a Bayesian Framework | BASS | October 2018 | Copyright © 2015 AbbVie 50

The false 
positive rate 
is nearly 10% 
for the 0.925 
threshold 
level, 
therefore 
probably not 
a good 
threshold to 
use.  

Simulation Results (comparing threshold cut-points)
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Recommend 
using 0.975  
probability 
threshold 
levels, as the 
false 
positive rate 
for the 
0.925 level 
is 15%, and 
10% for the 
0.95 level.  

Simulation Results (comparing threshold cut-points)
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SSD Visualization: (Forest Plot of Frequent AEs) 

Source: [Amit (2008); Pharmaceutical Statistics]
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 Incidence (count): Alternative Look

SSD visualization: (Threshold Plots)
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 Incidence Proportion

SSD visualization: (Threshold Plots)
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 Incidence Rate

SSD visualization: (Threshold Plots)
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 SSD Framework

SSD and IND safety reporting

 SSD for AEs / Serious and Unexpected Suspected Adverse Reactions 
(SUSARs) 
[CRF 312.32(c)(1)(i)(C) and CRF 312.32(c)(2)] 

 Assessment of all adverse events
 Specific assessment for SUSARs (including life threatening and fatal) for IND 

safety reporting needs 

 SSD for Serious (Expected) Suspected Adverse Reactions [CRF 
312.32(c)(1)(iv)]

 Increased rates of occurrence over that listed in the protocol or IB
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 SSD for SUSAR Reporting 

SSD and IND safety reporting

 Phase 2-4 trials

 1st relevant randomized trial (e.g. little or no information for drug from randomized 
longitudinal trial)

 Use model which require no prior for drug group, or use weak prior (e.g. low influence)

 One or more relevant randomized trials available for the compound

 Use information from the completed relevant trial(s) to inform priors for the drug group (and 
placebo group)

 Threshold setting:  use information from prior relevant trials (from a historical compound for 
the same disease indication, with the same or very similar patient population).

 Confirmation of signal:

 For events that exceed thresholds (from blinded analysis) and meet other important medical 
criteria, to assess and confirm causality, the SAC (or relevant body) can conduct additional 
Bayesian analysis on unblinded data, and include information from all other relevant trials, 
as well as information from the historical placebo database (to inform priors).
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 SSD for Serious (Expected) Suspected Adverse Reactions Reporting 

SSD and IND safety reporting

 Phase 2-4 trials

 Objective: Looking for increased rates of occurrence over that listed in the protocol or IB

 Use a model (e.g. population mixture models) which incorporates the prior relevant completed randomized 
trials (to inform priors for drug and placebo groups)

 Modify analysis, so that historical comparisons and thresholds are based upon estimates for drug 
treatment groups, instead of historical placebo.

 Threshold setting:  use information from prior relevant trials (for the current compound under investigation 
– drug treated patients).

 Confirmation of signal:
 If evidence indicates an increased rate of serious adverse reaction for the particular event in question, 

then information for the event/reaction in question should be submitted to the SAC or relevant DMC. 
 An additional Bayesian analysis can be conducted in which information from all previous relevant 

randomized, completed trials, and unblinded data from the current ongoing trial(s) can be used to 
assess the degree of change in rate. The completed relevant randomized trials will be used to create 
informative priors. 

 New estimates for risk difference or relative risk, and corresponding posterior probability will be 
computed to help confirm if there is an increase in the previously reported adverse reaction rate.



Lessons Learned / 
Final Thoughts / 
Conclusion
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 Evaluation of Additional Models to Better Account for Variable 
Follow-up Time and Higher Incidence Proportions/Rates

Additional Research

 For an interim look, patients will have varying amount of follow-up 
anywhere from a few days to several weeks or months. How does 
this affect the distribution of data and subsequent operating   
characteristics of models?

 Do models that work for adverse events that are rare or 
uncommon behave accordingly for more common events or 
combined events (with higher incidence proportions)?

 How to select and establish priors and how do they impact 
operating characteristics of models?



SSD: For Ongoing Clinical Trials, Utilizing a Bayesian Framework | BASS | October 2018 | Copyright © 2015 AbbVie 61

Additional Research
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 Models to account for variable follow-up time (i.e. interim cut, patient 
withdrawals, long-term trials)

Additional Research

 CDF for time to event (Exponential Distribution), assumes constant HR:

F(ti)  =  1 – e-λti

where: ti represents time of the ith patient 

 The probability that a patient experiences an event can be expressed as:

P(yi=1)  =  1 – e-λti = πi

 Therefore yi has a Bernoulli distribution, with pmf given as:

p(yi) = πi
yi (1 – πi) 1 – yi,  yi = 0, 1
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 Poisson-Binomial Distribution

Let Y = ∑𝒊𝒊=𝟏𝟏𝒏𝒏 𝒚𝒚 i , where yi have Bernoulli distributions with different probabilities

(e.g. πi), due to different follow-up times, then Y has a Poisson-Binomial Distribution: 

P[Y = y]  =   ∑𝑨𝑨Є 𝑭𝑭𝑭𝑭 ∏𝒊𝒊 Є 𝑨𝑨 π 𝒊𝒊∏𝒋𝒋 Є 𝑨𝑨𝑨𝑨(𝟏𝟏 − π𝒋𝒋)

If all patient follow-up time is identical, then (θ) = E[Y] / n is analogous to the parameter (π)
from the binomial distribution. However, if patient follow-up-time is not identical, then the
Poisson-Binomial Distribution (or some approximation) may be required for modeling.

Additional Research
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 Additional Bayesian Models to Research and Consider 

 Individual Bernoulli Likelihood Models

 (1) Population Mixture (prior) - Individual Bernoulli likelihood
 (2) Individual Mixture (prior) - Individual Bernoulli Likelihood

 Incidence Rate Models

 (3) Population Mixture (prior) - Poisson Likelihood

 Time to Event Models

 (4) Population Mixture (prior) - Exponential Likelihood

 Poisson-Binomial (or Approximate) Models

 Models attempting to model the Poisson-Binomial distribution
 Models approximating the Poisson-Binomial distribution [e.g. Negative Binomial Model (under-

dispersed)]

Additional Research
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 Expansion within and beyond AE Analysis

Expansion of SSD

 Incorporation of additional features to better control historical 
populations (e.g. Poisson regression, propensity scores,
methods/process for down-weighting historical data, etc.)

 Develop methods for assessing non-constant hazard rates (e.g.
Weibull, Gamma, piece-wise exponential, double exponential, etc.)

 Multiplicity control (finding the proper balance)

 Expansion to Vital signs, clinical labs, and ECG data

 Visualization Tools and Dashboard Displays
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 Issues (logistical and other) to Consider

Lessons learned / final thoughts / Conclusions

o Getting all required safety data in a timely fashion (e.g. events and 
associated exposure data), to keep with real-time reporting of serious 
adverse events to company safety departments.

o AE terminology
o Synchronizing SAE reporting for IND-SR purposes, between early phase and 

late phase.
o Incorporation of open label extension studies
o Set-up of proper firewalls (e.g. SAC)
o Incorporation of blinded SSD (and unblinded aggregate reporting) within 

the entire pharmacovigilance spectrum
o Coordination with DSMBs
o Training and understanding 
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 Incidence Proportion or Incidence Rate?

Lessons learned / Final thoughts / Conclusions

 Incidence Proportion (Time-adjusted) Issues:
 Computation of expected incidence (count) and corresponding time-

adjusted incidence proportion is more complicated
 Incorporating exposure time (e.g. follow-up time and time-at-risk) can be 

tricky
 Average time-at-risk per patient versus complete distribution of time at risk 

for (across all patients)
 Binomial/Bernoulli likelihood model for ongoing trials (with various rates 

[θi]due to different follow-up times)
 Incidence Rate Issues: 
 clinicians are more accustomed to seeing and understanding incidence 

proportions, not as comfortable with incidence rates
 Regulators are accustomed to incidence proportion and labels report 

incidence proportion, not incidence rate
 An actual count of patient with the event is easier to digest for SSD, then 

the more abstract incidence rate
 Beta-binomial distribution (within Bayesian framework, is easy to work 

with)
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 Final Thoughts / Summary

Lessons learned / final thoughts / conclusions

o Continued development of SSD and all Standardized Safety Evaluation and 
Analysis is Critical

o The Bayesian Framework provides a useful tool for conducting SSD analysis 
with continuous updating and aggregation of clinical trials data

o Simulations provide a comprehensive method for evaluating methods and 
testing ideas

o The models evaluated produce approximately comparable results in most 
cases (e.g. “all roads lead to Rome”):

o Expansion to other safety domains should be developed:
 Clinically significant lab and ECG findings can be analyzed using a similar 

Bayesian framework
 Models for vital signs (e.g. BP, HR) should be considered – continuous data 

framework 
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Questions?
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Thanks
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 Common parameters, random variables, and fixed constants for all models

Proposed Bayesian Models: New Model Specifications

λHP = underlying incidence (hazard) rate from a historical placebo  
population (i.e. referred to as λw in earlier slides)

PTHP = total patient time-at-risk from a historical placebo population

Yi =     A random variable that takes on the value of 1 (if patient i has the 
respective adverse event) or 0 (if patient does not have the adverse 
event), for a new blinded study or set of studies.

RR = randomization ratio
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 (1) Population Mixture (Prior) – Individual Bernoulli Likelihood Model

Proposed Bayesian Models: New Model Specifications

Yi | trt, λp, λd ~ Bernoulli(πi)  ;   i=1,…,N

where: πi =  πpi (trt) +  πdi(1-trt)
πpi = 1 – e -λpti  ;  i = 1,…,N

πdi = 1 – e -λdti  ;  i = 1,…,N

trt ~ Beta(α,β)   ;  where α+β = reasonable ESS (e.g. 800),
and β=(RR)(α)

λp ~ Gamma(αp= λHP x  PTHP, βp = PTHP)*

λd ~ Gamma(αd, βd) **

*    (Modify accordingly to incorporate placebo information from completed trials of current compound.) 

**  (αd, βd can be set to values [e.g. αP /x and βp /x] or some other value, so that λd is a neutral prior [e.g. x takes
on value so that β/x approximates PT for 1 subject in the study], when no prior knowledge of drug is available; or
set to relevant values elicited from previously completed studies of the current compound.)
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 (2) Individual Mixture (Prior) – Individual Bernoulli  Likelihood Model

Proposed Bayesian Models: New Model Specifications

Yi | trti, λp, λd ~ Bernoulli(πi)  ;   i=1,…,N

where: πi = �1 – e −λpti , if trti = 1 (e.g. pbo group)
1 – e −λdti , if trti = 0 (e.g. drug group)

trti ~ Bern(pla)   ;  i = 1,…,N

pla ~ Beta(α,β)   ;  where α+β = reasonable ESS (e.g. 800), and
β=(RR)(α)

λp ~ Gamma(αp= λHP x  PTHP, βp = PTHP)*

λd ~ Gamma(αd, βd) **

*    (Modify accordingly to incorporate placebo information from completed trials of current compound.) 

**  (αd, βd can be set to values [e.g. αP /x and βp /x] or some other value, so that λd is a neutral prior [e.g. x takes
on value so that β/x approximates PT for 1 subject in the study], when no prior knowledge of drug is available; or
set to relevant values elicited from previously completed studies of the current compound.)

Note: This model takes an extremely long time to run, with SAS Proc MCMC



SSD: For Ongoing Clinical Trials, Utilizing a Bayesian Framework | BASS | October 2018 | Copyright © 2015 AbbVie 78

 (3) Population Mixture (Prior) – Poisson Likelihood Model

Proposed Bayesian Models: New Model Specifications

Y | trt, λp, λd ~ Poisson(λT)   

where: λ = (λ p) x (TRT) + (λd) x (1 - TRT)
T = total time-at-risk

trt ~ Beta(α,β)   ;  where α+β = reasonable ESS (e.g. 800), and β=(RR)(α)

λp ~ Gamma(αp= λHP x  PTHP, βp = PTHP)

λd ~ Gamma(αd, βd) **

Note:  The Poisson distribution may not be the best choice with larger incidence rates, as the distribution
(i.e. variance) of the expected counts is likely to be under-dispersed.
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 (4) Overall Population Mixture (Prior) – Individual Exponential Likelihood
Model (Time-to-event)

Proposed Bayesian Models: New Model Specifications

r,T | β0   ~ Exponential(λ)  ;  in which the log of the likelihood function is used   

The log-likelihood (LL) function  is derived as:   r ln(λ)  - λ T
where: r = number of patients with the event,

T = total time for all patients (to event or censor)
Link any covariates to λ, with λi = exp(xi` β); 
for overall model: β0 = ln(λ), λ = eβ0

then LL = r β0 - T eβ0

β0 ~ Normal(0, 10,000)   ;  diffuse prior

λp ~ Gamma(αp= λHP x  PTHP, βp = PTHP)*

*    For comparison purpose (e.g. λ > λp) 

Note:  Modify β accordingly to incorporate individual treatment group (latent variable) priors
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